Abstract
The article presents a mathematical model of the thermal field for determining the values of temperatures during the submersible electromechanical converter operation. The influence of obtained temperature values on the safety and reliability of the submersible electromechanical converter is analyzed. In a submersible electromechanical converter the windings temperature has great importance. On the one hand, the windings temperature must be such as to transfer a sufficient amount of heat to the viscous loading environment for its processing (movement, transportation, etc.) to begin. On the other hand, the windings temperature must not exceed the limit values for the corresponding insulation class, since this can cause an emergency (fire, short circuit, etc.) The obtained results shows, that temperature on the surface of rotor's cylinders reaches 135 ° C, which provides rapid heating of a viscous substance, and therefore high performance of the pumping process. In this work, the bitumen BND 200/300 was used as the loading and cooling environment. The flash point of this brand of bitumen is 220 ° C and characterizes the degree of flammability of bitumen when it heated. Bitumen does not reach the maximum allowable temperature as a result of heating by means of submersible electromechanical converter that creates a safe temperature corridor in a technological chain at its processing. The temperature of the outer surface of the submersible electromechanical converter, with which the service technical staff may have a contact, does not exceed 20 ° C (Fig. 3), which is completely safe and does not endanger the workers health or life. Also, the obtained temperatures values are within the permissible limits of the heat resistance class of a winding electrical insulating material (H - 180 ° C), which also contributes to the safe submersible electromechanical converter operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.