Abstract

ABSTRACT The paper has taken a fundamental approach to study the nano-scale deformation behavior of Al-Al2O3 cermet coatings deposited by low-pressure cold spraying (LPCS) on AZ31 magnesium and Al6056 lightweight alloy substrates. Coating microstructural characteristics were first evaluated and correlated with LPCS process parameters using metallurgical characterization techniques: SEM, 3D optical profilometry, and XRD, followed by their microhardness and wear depth measurements and comparing with uncoated substrates under three-body abrasion wear. These properties were analyzed/mapped against probable deformation scenarios for nano-scale yield strength determination using the combined experimental nanoindentation load-depth curve method and computational expanding cavity models (ECMs). Obtained yield strength with key coating parameters like hardness and Young’s modulus were taken for modeling and simulation of strain-hardening effect under a peak loading of 165 mN in ABAQUS finite element (FE). Results from both combined experimental/computational and FE approaches indicate a progressive elasto-plastic mode being the dominating coating deformation mechanism with a strain hardening exponent of 0.15, under the studied loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.