Abstract
This study is focused on the impact and residual stress behaviour of aluminum component repair using aluminum powder via two different types of cold spray processes; high pressure cold spray (HPCS) and low-pressure cold spray (LPCS). It has been carried out via smoothed particle hydrodynamics simulations, comparing aluminum substrate with other lightweight materials such as titanium and magnesium. The obtained results have shown that the impact behaviour is influenced by velocity, porosity, deformation behaviour, flattening ratio, total energy and maximum temperature. The aluminum particles impacting on aluminum substrates using LPCS is slightly deformed, with the smallest flattening ratio leading to less pore formation between the particles. This has subsequently resulted in good coating quality. Furthermore, HPCS has contributed greatly to the deposition of particles on the heavier and harder substrate, such as titanium substrate. Thus, the overall result indicates that LPCS is better for repairing aluminum component compared to HPCS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.