Abstract

This paper investigates the program saturation in aggressively scaled interpoly dielectric (IPD) floating-gate (FG) cells for nand application. To describe the program saturation in IPD stacks containing thick suboxides (ges 4 nm) , a simple model was developed, directly yielding the maximum reachable programmed threshold voltage level for a given FG cell geometry. The presented model agrees very well to program saturation measurements carried out on a 48 nm FG nand technology with an IPD composed of SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> . By extending the considerations to an arbitrary IPD, this paper represents the first attempt to quantify the IPD current blocking ability required for future scaled FG memory cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.