Abstract

we propose a process and device design strategy for Lg=14nm Si bulk n/p-FinFETs based on the effects of process-induced geometry variability on device performance. A calibrated TCAD simulation was used to design and optimize structures and these were also tested under various process split conditions. By comparing the I–V data from process-changed devices with nominal CMOS, relationships between process- induced geometry variation and device performance were investigated and analyzed. Moreover a DC/RF compact model was executed to observe the geometry variability effects on ring oscillator and RF applications. Finally key circuit design factors to mitigate process variability are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.