Abstract
The objective of this paper is to investigate numerically the existence of thermal minimum film thickness at the die-billet interface in the inlet in the hydrostatic extrusion of aluminum alloy by incorporating the viscous heat dissipation in the lubricating film. Governing equations (Reynolds equation, energy equation, Roelands viscosity relation, and film thickness geometry relation) have been solved herein using lobatto quadrature technique. Predicted minimum film thickness, temperature, and pressure at the exit of inlet zone have been used as boundary conditions in the work zone analysis. In the proposed work zone analysis, heat transfer by convection along the lubricating film, conduction across the film, uniform billet heating by plastic deformation and strain hardening of billet material have been accounted. Drastic reduction in thermal minimum film thickness has been observed in the inlet zone with respect to the isothermal minimum film thickness of inlet zone. However, about 4 to 5 times less thermal minimum film thickness has been achieved respect to the corresponding isothermal minimum film thickness at the exit of the inlet zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.