Abstract

Recently developed colorimetric interferometry technique was used for the study of both minimum and central film thicknesses for a wide range of operating parameters. Over 300 film thickness maps were obtained for the combination of four values of the materials parameter G, five values of the load parameter W and many values of the speed parameter U. The use of a spacer layer extended the range of film thickness measurement down to 5 nm. An excellent agreement was found between experimental values and data obtained from numerical solution presented by Venner and ten Napel, especially for thin lubrication films. An increase in a speed exponent with increasing material parameter G was observed for both central and minimum film thicknesses. The minimum film thickness and, thereby, the ratio between central and minimum film thickness was confirmed to be of a stronger dependence on material and load dimensionless parameters than Hamrock and Dowson equations predict. Presented at the 54th Annual Meeting Las Vegas, Nevada May 23–27, 1999

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call