Abstract
Exciton recombination zone, where the photons are generated, can greatly affect the performance, such as the efficiency and color purity, of the quantum dot (QD) light-emitting diodes (QLEDs). To probe the exciton recombination zone, 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) is doped into the charge transport layer as a fluorescent sensor; by monitoring the Förster resonant energy transfer (FRET) between QD and DCJTB, the location of the recombination zone can be determined. It is found that the electron transport layer (ETL) has a great impact on the recombination zone. For example, in QLEDs with ZnMgO ETL, the recombination zone is near the interface of the QD/hole transport layer (HTL) and is shifted to the interface of the QD/ETL as the driving voltage is increased, whereas in devices with 1,3,5-tris(2-N-phenylbenzimidazolyl) benzene (TPBi) ETL, the recombination zone is close to the interface of the QD/ETL and moved to the interface of the QD/HTL with the increase in the driving voltage. Our results can also clarify the light emission mechanism in QLEDs. In devices with ZnMgO ETL, the emission is dominated by the direct charge recombination, whereas in devices with TPBi ETL, the emission is contributed by both FRET and direct charge recombination. Our studies suggest that fluorescent probe can be a powerful tool for investigating the exciton recombination zone, light emission mechanism, and other fundamental processes in QLEDs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.