Abstract
Colloidal quantum dot (QD) light-emitting diodes (QLEDs) are of high interest for future display devices owing to the potential for realizing a wide color gamut. The performances of the QLEDs are approaching those of organic light-emitting diodes (OLEDs) in terms of lifetime as well as efficiency. Recently, low-temperature sol–gel processed ZnO has been utilized as an electron transport layer (ETL) of inverted QLEDs owing to the simple processability and the ease of property modification. However, the devices with the sol–gel ZnO suffer from high leakage current and resultant low efficiency especially at low driving voltages due to intrinsic defect states of ZnO. Here we report inverted QLEDs showing enhanced performance by introducing ethylenediaminetetraacetic acid (EDTA) for defect-passivation in ZnO. We found that EDTA effectively fills up the oxygen vacancies in ZnO by chelating function with little electrical conductivity degradation. As a result, the QLEDs with EDTA–ZnO as the ETL showed an order of magnitude lower current density at low voltage regions (<3 V) and approximately 25% higher external quantum efficiency than the device with pristine ZnO. We investigated the effects of EDTA on the properties of the ZnO films and the QLEDs using them with various analyses. We anticipate that the concepts and results shown here will help with further development of low-temperature processible, high performance inverted QLEDs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.