Abstract

In this paper, an analytical model for Junctionless (JL) Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET) based biosensor for label free electrical detection of biomolecules like enzyme, cell, DNA etc. using the Dielectric Modulation (DM) technique has been developed. The analytical results are validated with the help of “Sentaurus” device simulation software. For the biomolecule immobilization, nanogap cavity is formed in the JL MOSFET by etching gate oxide layer from both source as well as drain end of the channel. As a result, the surface potential in the channel underneath the nanogap cavity region is affected by the neutral and charged biomolecules that binds to SiO2 adhesion layer in the cavity. The surface potential solution is obtained by solving a 2-D Poisson’s equation assuming parabolic potential profile in the channel. The shift in threshold voltage and drain current of the device has been considered as the sensing metric for detection of biomolecules under dry environment condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.