Abstract

Silver nanoparticles (AgNPs) can be produced safely and greenly using water hyacinth, an invasive aquatic plant, as a reducing agent. This study aimed to optimize the UV-irradiation parameters for the synthesis of AgNPs from water hyacinth leaf extract. The study varied the reaction time and pH levels and added a stabilizing agent to the mixture. The synthesized AgNPs were characterized using UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and inductively coupled plasma optical emission spectroscopy (ICP-OES). The findings revealed that the optimal conditions for synthesizing AgNPs were achieved by adjusting the pH level to 8.5, adding starch as a stabilizing agent, and exposing the mixture to UV-A radiation for one hour. These conditions resulted in the smallest size and highest quantity of AgNPs. Furthermore, the synthesized AgNP colloids remained stable for up to six months. This study highlights the potential of utilizing water hyacinth as a sustainable and cost-effective reducing agent for AgNP synthesis, with potential applications in pharmaceuticals, drug development, catalysis, and sensing detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.