Abstract
In this study silver nanoparticles were prepared by chemical reduction method using silver nitrate as metal precursor, starch as protecting agent, and sodium borohydride (NaBH4) as a reducing agent. Formation of silver nanoparticles was monitored using UV–vis absorption spectroscopy and dynamic light scattering (DLS). They were supported on silica by dispersing silica powder in the suspension of destabilized silver nanoparticles. Samples containing different proportions of silver were thus prepared. This method is at variance from the conventionally employed method, i.e., impregnation of silver salt from its solution on support. Ag/SiO2 samples were characterized by UV–vis absorption spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), inductive coupled plasma optical emission spectroscopy (ICP-OES), and N2 adsorption–desorption. Superior catalytic performance of the catalyst prepared by the present method could be observed in a test reaction of ethylbenzene oxidation affording high selectivity to acetophenone as compared to the catalyst prepared by the conventional reported methods. The 5 wt % Ag/SiO2 catalyst was found not much susceptible to sintering as could be inferred from the comparable performance of the regenerated and fresh catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.