Abstract

Today, around the world, there is huge demand for natural materials that are biodegradable and possess suitable properties. Natural fibers reveal distinct aspects like the combination of good mechanical and thermal properties that allow these types of materials to be used for different applications. However, fibers alone cannot meet the required expectations; design modifications and a wide variety of combinations must be synthesized and evaluated. It is of great importance to research and develop materials that are bio-degradable and widely available. The combination of PLA+, a bio-based polymer, with natural fillers like sawdust and soybean oil offers a novel way to create sustainable composites. It reduces the reliance on petrochemical-based plastics while enhancing the material’s properties using renewable resources. This study explores the creation of continuous hexagonal-shaped 3D-printed PLA+ samples and the application of post-print fillers, specifically sawdust and soybean oil. PLA+ is recognized for its eco-friendliness and low carbon footprint, and incorporating a hexagonal pattern into the 3D-printed PLA+ enhances its structural strength while maintaining its density. The addition of fillers is crucial for reducing shrinkage and improving binding capabilities, addressing some of PLA+’s inherent challenges and enhancing its load-bearing capacity and performance at elevated temperatures. Additionally, this study examines the impact of varying filler percentages and pattern orientations on the mechanical properties of the samples, which were printed with an infill design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.