Abstract

3D printing technology has allowed the creation of custom applicators for high dose rate (HDR) brachytherapy, especially for complex anatomy. With conformal therapy comes the need for advanced dosimetric verification. It is important to demonstrate how dose to 3D printed materials can be related to dose to water. This study aimed to determine dose differences and uncertainties using 3D printed PLA and ABS plastics for Radiochromic film calibration in HDR brachytherapy.Gafchromic EBT3 film pieces were irradiated in water with an Ir-192 source at calculated dose levels ranging from 0 to 800 cGy, to create the control calibration curve. Similarly, film was placed below 3D printed PLA and ABS blocks and irradiated at the same dose levels calculated for water, ranging from 0 to 800 cGy. After a 72-h development time, film pieces were scanned on a flatbed scanner and the median pixel value was recorded in the region of highest dose. This value was converted to net optical density (NOD). A rational function was used to fit a calibration curve in water that relates NOD to dose for red, green, and blue color channels. Based on this fitted curve, ABS and PLA NOD values were used to estimate dose in 3D printed plastics.From the fitted calibration curve, mean residual error between measured and planned dose to water was less than 1% for each color channel at high dose levels. At high dose levels, ABS and PLA mean residual errors were about 6.9 and 7.8% in the red channel, while 5.2 and 5.7% in the green channel. Combined uncertainties measured to be about 6.9% at high dose levels. This study demonstrated dose differences and uncertainties using 3D printed applicators for HDR Ir-192 brachytherapy.

Highlights

  • Custom applicators are useful for treating superficial tumors with high dose rate (HDR) brachytherapy

  • The goal of this work was to obtain the relationship of doses and uncertainties in 3D printed PLA and acrylic butadiene styrene (ABS) plastics when used in lieu of water for film calibration for HDR Iridium-192 brachytherapy sources

  • Since EBT3 film is less accurate at low doses, the absolute mean error was divided into low dose (≤100 cGy) and high dose (> 100 cGy)

Read more

Summary

Introduction

Custom applicators are useful for treating superficial tumors with high dose rate (HDR) brachytherapy. They allow highly conformal dose delivery, and are especially beneficial for oblique surfaces, such as the face [1, 2]. 3D-printed superficial applicators for high-dose-rate skin brachytherapy. Gafchromic film dosimetry of a new HDR Ir-192 brachytherapy source. Niroomand-Rad A, Blackwell CR, Coursey BM, Gall KP, Galvin JM, McLaughlin WL, Meigooni AS, Nath R, Rodgers JE, Soares CG. Radiochromic film dosimetry: recommendations of AAPM radiation therapy committee task group 55. Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM radiation therapy committee task group no

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call