Abstract

This paper deals with the evaluation of the effective mechanical properties of carbon nanocone centered composites using a 3D nanoscale representative volume element based on continuum mechanics. For extracting the effective material constants, the authors have taken the basis of theories of elasticity. The results constituting the effective Young's modulus of the composite and Poisson's ratio for different parameters stated above have been presented and validated with rule of mixtures. It can be clearly visualized from the results that the load-carrying capacities of carbon nanocones in the representative volume elements are quite significant and the same has been demonstrated with subsequent cases. Simulation-based modeling can show a considerable part in the improvement of carbon nanocone-based composites by providing results that help in appreciative of the performance of composites. Moreover, for a volume fraction of the CNC as 2.33% in a cylindrical representative volume element and a 19.2° apex angle of the cone, the stiffness of the composite can increase as many as 4.9 times of the matrix. Similarly for hexagonal and square, the increase is in terms of 4.3 and 3.01 times respectively. Cylindrical representative volume element is the best as it provides the maximum reinforcement in terms of effective Young's modulus of the composite. Carbon nanocone-based composites provide results that help in understanding the elastic behavior of composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call