Abstract

Quantum machine learning uses quantum mechanical concepts of superposition of states to make the decision. In this work, we used these quantum advantages to enhance deep reinforcement learning (DRL). Our primary and foremost goal is to investigate and elucidate a way of representing and solving the frozen lake problems by using PennyLane which contains Xanadu’s back-end quantum processing unit. This paper specifically discusses how to enhance classical deep reinforcement learning algorithms with quantum computing technology, making quantum agents get a maximum reward after a fixed number of epochs and realizing the effect of a number of variational quantum layers on the trainability of enhanced framework. We have analyzed that, as the number of layers increases, the ability of the quantum agent to converge to the optimal state also increases. For this work, we have trained the framework agent with 2, 3, and 5 variational quantum layers. An agent with 2 layers converges to a total reward of 0.95 after the training episode of 526. The other agent with layers converges to a total reward of 0.95 after the training episode of 397 and the agent which uses 5 quantum variational layers converges to a total reward of 0.95 after the training episode of 72. From this, we can understand that the agent with a more variational layer exploits more and converges to the optimal state before the other agent. We also analyzed our work in terms of different learning rate hyperparameters. We recorded every single learning epoch to demonstrate the outcomes of enhanced DRL algorithms with selected 0.1, 0.2, 0.3, and 0.4 learning rates or alpha values. From this result, we can conclude that the greater the learning rate values in quantum deep reinforcement learning, the fewer timesteps it takes to move from the start point to the goal state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call