Abstract

This study investigated the compressive strength of hardened cement paste and the formation of calcium silicate hydrate (C-S-H) with the addition of nano silica (SiO2). Through this search, the development of the concretes strength was determined to better understand the process of cement hydration. Compressive strength testing was performed using MTS and Forney testing machines to determine stress-strain curves and elastic modulus of materials. The hydration process and formation of C-S-H and calcium hydroxide (CH) was examined using Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). This study also incorporates the use of vacuum curing, in comparison to that of the traditional water curing method. Results indicate an increase in compressive strength using 1%, 3% and 5% of nano silica to cement replacement by volume in comparison to the control mix (without nano silica). The optimum cement replacement to yield maximum strength was of the 1% nano silica content. The formation of C-S-H increases significantly during the early testing days which correspond with the drastic increase in compressive strength. The hydration process continues to increase throughout the 56 day trails at a moderate rate. The traditional water curing method proves to be more efficient and beneficial than of the vacuum curing method. However, vacuum cured results showed only about a 5% reduction in strength after 56 day tests in comparison to the water curing method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call