Abstract

SS410 is widely used as a hydro-machinery steel and is generally exposed to the slurry erosion conditions, which decrease its useable-life. In the current investigation, an attempt was made to analyse the effect of slurry erosion on this steel. The slurry erosion testing was done in a slurry erosion test rig, which provides possibility to vary impingement conditions like average particle size, slurry concentration, impingement angle, and velocity of jet. Moreover, some mechanical and metallurgical properties of the steel were also investigated. It was concluded that the slurry erosion rate of the steel increases with increase in the concentration and jet velocity. However, with the increase in average particle size, slurry erosion was found to decrease, which may be due to the lower penetration capacity of higher sand particles. Moreover, slurry erosion, in general, was found to be maximum at a parametric combination of lowest average particle size (150 µm), 60° impingement angle, maximum concentration (45000 ppm), and maximum jet velocity (35 m/sec). Slurry erosion was found to be maximum at an impingement angle of 60°, indicating a mixed mode of erosion (ductile as well as brittle) for the given steel. The mechanisms involved in slurry erosion were found to be crater formation, ploughing, and lip formation followed by its fracture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call