Abstract

Dye-sensitized photo-electrochemical cells (DS-PECs) form an emerging technology for the large-scale storage of solar energy in the form of (solar) fuels because of the low cost and easy processing of their constitutive photoelectrode materials. Such hybrid photoelectrodes consist of molecular dyes grafted onto transparent semiconducting metal oxides in combination with catalytic centers. The optimization of the performances of such hybrid photoelectrodes requires a detailed understanding of the light-driven electron transfer processes occurring first at the interface between the semi-conducting material and the dye and then between the dye and the catalytic center. Here we address the first of these issues and use quantum chemistry to determine the structural and electronic features of the interfaces between a push-pull dye and the p-NiO (100) surface. We show that these calculations are in good agreement with transient absorption spectroscopic measurements on a prototypical dye-sensitized photocathode s...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.