Abstract
We study inverse problems of identification of lower-order coefficients in a second-order parabolic equation. The coefficients are sought in the form of a finite series segment with unknown coefficients, depending on time. The linear case is also considered. Overdetermination conditions are the integrals over the boundary of a solution’s domain with weights. We focus on existence and uniqueness theorems and stability estimates for solutions to these inverse problems. An operator equation to which the problem is reduced is studied with the use of the contraction mapping principle. A solution belongs to some Sobolev space and has all generalized derivatives occurring into the equation summable to some power. The method of the proof is constructive, and it can be used for developing new numerical algorithms for solving the problem.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have