Abstract
The initial-irregular oblique derivative boundary value problems for linear and nondivergence parabolic complex equations of second order in multiply connected domains are dealt with, where the coefficients of equations are measurable. Firstly the uniqueness of solutions for the above problems is introduced, and then somea priori estimates of solutions for the problems are given. By using the above estimates and the Leray-Schauder theorem, the existence of solutions of the initial-boundary value problems can be proved. The results are generalizations of corresponding theorems in literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.