Abstract
Food-web investigations inform management strategies by exposing potential interactions between native and nonnative species and anticipating likely outcomes associated with species removal efforts. We leveraged a natural gradient of compositional turnover from native-only to nonnative-only fish assemblages, combined with an intensive removal effort, to investigate underlying food-web changes in response to invasive species expansion in a Lower Colorado River tributary. Nonnative fishes caused coordinated isotopic niche displacement in native fishes by inducing resource shifts toward lower trophic positions and enriched carbon sources. By contrast, nonnative fishes did not experience reciprocal shifts when native fishes were present. Asymmetrical outcomes between native and nonnative fishes indicated species displacement may result from competitive or consumptive interactions. Native species’ isotopic niches returned to higher trophic levels after nonnative green sunfish (Lepomis cyanellus) removal, indicating removal efforts can support trophic recovery of native fishes like desert suckers (Catostomus clarkii) and roundtail chub (Gila robusta). Using stable isotope analysis in preremoval assessments provides opportunities to identify asymmetric interactions, whereas postremoval assessments could identify unintended consequences, like mesopredator release, as part of adaptive decision making to recover native fishes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian Journal of Fisheries and Aquatic Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.