Abstract

This paper proves that certain classes of stable nonlinear systems do not admit any smooth Lyapunov functions. In fact, the stability analysis of two different classes of nonlinear dynamical systems is provided, and it is demonstrated that their stability properties cannot be established by any convex Lyapunov functions or smooth Lyapunov functions. In this regard, we begin by studying our first class of autonomous dynamical systems and prove that, despite stability, there are no convex Lyapunov functions in the form of V(x) or V(t,x) to establish the stability properties. For the second class, we consider a much more general form of nonlinear autonomous dynamical systems with a stable origin, and prove that this class, too, does not admit any smooth Lyapunov functions in the form of V(x) or V(t,x). Furthermore, another general class of stable non-autonomous dynamical systems is presented, and it is demonstrated that there is no smooth Lyapunov function in the form of V(x) to establish the stability properties. Finally, for the second class of more general stable non-autonomous systems, it is proved that the class does not admit even a continuous Lyapunov function in the form of V(x) or V(t,x).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.