Abstract
For nonsmooth Filippov systems, the stability of the system is assumed to be proved by nonsmooth Lyapunov functions, such as piecewise smooth Lyapunov functions. This extension was based on the Filippov solution and Clarke generalized gradient. However, it is difficult to estimate the gradient of a non-smooth Lyapunov function. In some cases, the nonsmooth system can be divided into continuous and discontinuous components. If the Lebesgue measure of the discontinuous components is zero, the smooth Lyapunov function can be utilized to prove the stability of the system owing to the inner product of the gradient of the Lyapunov function of the discontinuous components being zero. In this paper, we apply the smooth Lyapunov function to prove the stability of the nonsmooth ratio-dependent predator-prey system. In contrast to the existing literature, in this paper, although the system is divided into continuous and discontinuous components, the inner product of the gradient of the Lyapunov function of the discontinuous part is not zero but negative. In the proof of stability, the negative value condition is stricter than the zero-value condition. This proof method only needs to construct a smooth Lyapunov function, which is simpler than a non-smooth Lyapunov function or other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.