Abstract
In this paper, we focus on the viability and attraction for switched nonlinear systems with nonsmooth Lyapunov functions. We determine the viable set and region of attraction for switched systems in which Lyapunov functions are piecewise smooth. The switching law is constructed by using the directional derivatives of a piecewise smooth Lyapunov function along the trajectories of the subsystems. Sufficient conditions are derived to guarantee the viability and attraction of switched nonlinear systems on the level set of a piecewise smooth Lyapunov function. We further extend the method to switched systems involving possible sliding motions. The approach in the paper provides a unified framework for studying viability and attraction with a systematic consideration of sliding motions. Finally, considering two certain classes of piecewise smooth functions, the related conditions of the viability and attraction for the level set are developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Industrial & Management Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.