Abstract

AbstractN‐doped titanium dioxide (TiO2) thin films are grown on Si(100) and indium tin oxide (ITO)‐coated borosilicate glass substrates by metal‐organic (MO)CVD. The intrinsic doping of TiO2 thin films is achieved using all‐nitrogen‐coordinated Ti precursors in the presence of oxygen. The titanium amide‐guanidinate complex, [Ti(NMe2)3(guan)] (guan = N,N′‐diisopropyl‐2‐dimethylamidoguanidinato) has been developed to compensate for the thermal instability of the parent alkylamide [Ti(NMe2)4]. Both of these amide‐based compounds are tested and compared as precursors for intrinsically N‐doped TiO2 at various deposition temperatures in the absence of additional N sources. The structure and morphology of TiO2 thin films are characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Rutherford back scattering (RBS), nuclear reaction analysis (NRA), and secondary ion mass spectrometry (SIMS) analyses are performed to determine N content and distribution in the films. The optical and photoelectrochemical properties of TiO2 thin films on ITO substrates are also examined. N‐doped TiO2 thin films, grown from [Ti(NMe2)3(guan)] at 600 °C, exhibit the lowest optical absorption edge (3.0 eV) and the highest visible light photocurrent response. When compared to undoped TiO2, while in UV light photoconversion efficiency decreases significantly, the intrinsically N‐doped TiO2 shows enhanced photocurrents under visible light irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call