Abstract
Recent work demonstrated that intrinsic Au nanoparticle decoration of TiO2 nanotube arrays (NTs) can be achieved by electrochemical anodization of Ti–Au alloy substrates. However, for a Ti–Au cast alloy produced by melt-alloying, the Au concentration cannot exceed the solubility limit of Au in Ti of 0.2at.% – this sets constraints on the intrinsic Au nanoparticle loading on anodic TiO2 NTs. Here we explore “metastable” Ti–Au metal substrates that are produced by Ti and Au cosputtering and we establish Au concentrations that far exceed the solubility limit in cast Ti–Au alloys. We show the use of these “metastable” Ti–Au sputtered layers for the anodic formation of TiO2 NTs with a much higher density of Au nanoparticle loading than using classic alloys. Under optimized conditions (Au nanoparticle density) photocatalytic H2 production from such Au@TiO2 platforms provides a 15 times higher photocatalytic H2 evolution rate than the best rates achieved with conventional alloys.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have