Abstract
Home range size and metabolic rate of animals are theorized to scale in relation to body mass with similar exponents. This expectation has only been indirectly tested using lab-derived estimates of basal metabolic rate as proxies for field energy requirements. Therefore, it is unclear if existing theory aligns with observed patterns of home range scaling since field metabolic rates may scale differently than basal metabolic rates. We conducted the first direct field test of the relationship between home range and metabolic rate allometry. Using acoustic telemetry, we simultaneously measured the home range sizes and field metabolic rates of lemon sharks (Negaprion brevirostris) spanning one order of magnitude in body mass and compared the allometric scaling exponents of these traits. Similarity between allometric scaling exponents confirmed an expected strong association between metabolic rate and home range size. However, a nonsignificant but negative association between standard metabolic rate (SMR) and home range size suggests a complex relationship between metabolism and home range, contrasting previous assumptions of a positive relationship. Nevertheless, an overall positive association between home range size and total metabolic rate persisted, driven by a strong association between active energy expenditure and home range size. These findings underscore the intricate relationship between energetics and home range size, emphasizing the need for additional direct field investigations and the potential for modern tagging technologies to gather relevant data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have