Abstract

African weakly electric mormyrid fish show a high diversity of their electric organ discharge (EOD) both across and within genera. Thanks to a recently developed technique of artificial reproduction in mormyrid fish, we were able to perform hybridizations between different genera and within one genus (Campylomormyrus). The hybrids of intergenus hybridizations exhibited different degrees of reduced survival related to the phylogenetic distance of the parent species: hybrids of the crosses between C. rhynchophorus and its sister genus Gnathonemus survived and developed normally. Hybrids between C. rhynchophorus and a Mormyrus species (a more basal clade compared to Campylomormyrus s) survived up to 42days and developed many malformations, e.g., at the level of the unpaired fins. Hybrids between C. numenius and Hippopotamyrus pictus (a derived clade, only distantly related to Campylomormyrus) only survived for two days during embryological development. Eight different hybrid combinations among five Campylomormyrus species (C. tamandua, C. compressirostris, C. tshokwe, C. rhynchophorus, C. numenius) were performed. The aim of the hybridizations was to combine species with (1) either caudal or rostral position of the main stalk innervating the electrocytes in the electric organ and (2) short, median or long duration of their EOD. The hybrids, though they are still juveniles, show very interesting features concerning electrocyte geometry as well as EOD form and duration: the caudal position of the stalk is prevailing over the rostral position, and the penetration of the stalk is dominant over the non-penetrating feature (in the Campylomormyrus hybrids); in the hybrid between C. rhynchophorus and Gnathonemus petersii it is the opposite. When crossing species with long and short EODs, it is always the long duration EOD that is expressed in the hybrids. The F1-Hybrids of the cross C. tamandua×C. compressirostris are fertile: viable F2-fish could be obtained with artificial reproduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call