Abstract

The capacity to predict the sensory consequences of movements is critical for sensory, motor, and cognitive function. Though it is hypothesized that internal signals related to motor commands, known as corollary discharge, serve to generate such predictions, this process remains poorly understood at the neural circuit level. Here we demonstrate that neurons in the electrosensory lobe (ELL) of weakly electric mormyrid fish generate negative images of the sensory consequences of the fish's own movements based on ascending spinal corollary discharge signals. These results generalize previous findings describing mechanisms for generating negative images of the effects of the fish's specialized electric organ discharge (EOD) and suggest that a cerebellum-like circuit endowed with associative synaptic plasticity acting on corollary discharge can solve the complex and ubiquitous problem of predicting sensory consequences of movements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call