Abstract
Brain-Computer Interfaces (BCIs) are systems which translate brain neural activity into commands for external devices. BCI users generally alternate between No-Control (NC) and Intentional Control (IC) periods. NC/IC discrimination is crucial for clinical BCIs, particularly when they provide neural control over complex effectors such as exoskeletons. Numerous BCI decoders focus on the estimation of continuously-valued limb trajectories from neural signals. The integration of NC support into continuous decoders is investigated in the present article. Most discrete/continuous BCI hybrid decoders rely on static state models which don’t exploit the dynamic of NC/IC state succession. A hybrid decoder, referred to as Markov Switching Linear Model (MSLM), is proposed in the present article. The MSLM assumes that the NC/IC state sequence is generated by a first-order Markov chain, and performs dynamic NC/IC state detection. Linear continuous movement models are probabilistically combined using the NC and IC state posterior probabilities yielded by the state decoder. The proposed decoder is evaluated for the task of asynchronous wrist position decoding from high dimensional space-time-frequency ElectroCorticoGraphic (ECoG) features in monkeys. The MSLM is compared with another dynamic hybrid decoder proposed in the literature, namely a Switching Kalman Filter (SKF). A comparison is additionally drawn with a Wiener filter decoder which infers NC states by thresholding trajectory estimates. The MSLM decoder is found to outperform both the SKF and the thresholded Wiener filter decoder in terms of False Positive Ratio and NC/IC state detection error. It additionally surpasses the SKF with respect to the Pearson Correlation Coefficient and Root Mean Squared Error between true and estimated continuous trajectories.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.