Abstract

Hydrocephalus is a condition characterized by altered cerebrospinal fluid (CSF) dynamics and chronic rises in intracranial pressure (ICP). However, the reason why hydrocephalic physiologies fail to inhibit dangerously high ICP levels is not known. Infusion studies are used to raise ICP and evaluate CSF circulation disorders. In this pilot study, ICP signals recorded during infusion tests from 33 patients with normal pressure hydrocephalus and 36 patients having developed a secondary form of normal pressure hydrocephalus were characterized using Permutation Entropy (PE), a symbolic non-linear method to quantify complexity. Each ICP signal was divided into four epochs--baseline (before infusion begins), infusion, plateau, and recovery (after infusion has stopped)--and the mean PE was calculated for each epoch. Statistically significant differences were found between PE for most epochs (p<;0.00833, Bonferroni-corrected Wilcoxon tests), with a significant decrease in the plateau phase. However, differences between PE for normal pressure and secondary hydrocephalus were not significant. Results suggest that the increase in ICP during infusion studies is associated with a significant decrease in PE. PE analysis of ICP signals could be useful for increasing our understanding of CSF dynamics in normal pressure hydrocephalus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call