Abstract

We studied state-filling-dependent intraband carrier dynamics in InAs/GaAs self-assembled quantum dots using two-color photoexcitation spectroscopy. The photoluminescence (PL) intensity was observed to be dramatically reduced by selectively pumping carriers from the intermediate state to the continuum state located above the conduction band edge, and the PL-intensity reduction decreased with an increase in the continuous-wave excitation power. We analyzed the observed state-filling-dependent intraband carrier dynamics by detailed modeling of carrier excitation and relaxation processes in which the two-photon absorption for the interband transition, Pauli blocking, and saturable absorption for the intraband transition is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.