Abstract
We report theoretical and experimental results of our investigation on carrier capture and relaxation processes in undoped and modulation-doped InAs/GaAs self-assembled quantum dots (QDs). We find that carrier capture and relaxation in the ground state is faster in the modulation-doped quantum dots compared to the case in neutral dots at an excitation level as low as one electron–hole pair per dot. The ultrafast photoluminescence (PL) transient rise time observed in the charged dots is attributed to the relaxing of strained field induced by the presence of cold carriers in the dots. The Hamiltonian of electron’s interaction with local vibrating field and carrier capture time are also calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.