Abstract

We have studied time-resolved intraband transition from the intermediate state to the continuum state of the conduction band in InAs/GaAs self-assembled quantum dots embedded in a one-dimensional photonic cavity structure using a two-color photoexcitation spectroscopy. The photonic gap was tuned to enhance the excitation from the intermediate state to the conduction band, whose energy is selected to be less than the interband transition energy between the intermediate state and the quantized hole state. The photoluminescence intensity was observed to be dramatically reduced by selectively pumping carriers in the intermediate state. This effect has been analyzed by modeling detailed carrier relaxation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.