Abstract

The East Kamchatka and East Sakhalin Currents (EKC and ESC) are the western boundary currents of the subarctic North Pacific and Okhotsk Sea. Variability in the EKC and ESC velocities could exert a substantial effect on ecosystems and fish stocks in the southwestern Bering Sea and Okhotsk Sea. Using satellite-derived data (sea surface heights, geostrophic current velocities, and sea surface temperatures, 2002–2020), we demonstrate that changes in zonal wind generate sea level variations on the shelf in the southwestern Bering Sea over a period of 18–29 days and with an amplitude of 5–20 cm. The ebb/flood events on the shelf lead to changes in the velocity, direction, and position of the EKC. The sea level anomalies propagate along the western Kamchatka, northern Kuril Islands and the northern and western Okhotsk Sea and result in the variability of geostrophic current velocities in the ESC zone. The strengthening (weakening) of ESC leads to an increase (a decrease) in SST in the southern part of the Okhotsk Sea by 1–3 °C. In the northwestern Okhotsk Sea, in addition to wind-induced variability, there are temporary changes in the geostrophic currents with a period of 14 days caused by fortnightly tides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.