Abstract
To improve the detection accuracy of the drone-based oriented vehicle object detection network and establish high-accuracy vehicle trajectory datasets, we present a freeway on-ramp vehicle (FRVehicle) detection dataset with oriented bounding box annotations for vehicles in freeway on-ramp scenes from drone videos. Based on this dataset, we analyzed the dimension and angle distribution patterns of road vehicle object oriented bounding boxes and designed an Asymmetric Selective Kernel Network. This algorithm dynamically adjusts the receptive field of the backbone network’s feature extraction to accommodate the detection requirements for vehicles of different sizes. Additionally, we estimate vehicle heights with high-precision object detection results, further enhancing the accuracy of the vehicle trajectory. Comparative experimental results demonstrate that the proposed Asymmetric Selective Kernel Network achieved varying degrees of improvement in detection accuracy on both the FRVehicle dataset and DroneVehicle dataset compared to the symmetric selective kernel network in most scenarios, validating the effectiveness of the method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have