Abstract

Recent studies have suggested that an alteration in the gut microbiota and their products, particularly endotoxins derived from Gram-negative bacteria, may play a major role in the pathogenesis of liver diseases. Gut dysbiosis caused by a high-fat diet and alcohol consumption induces increased intestinal permeability, which means higher translocation of bacteria and their products and components, including endotoxins, the so-called “leaky gut”. Clinical studies have found that plasma endotoxin levels are elevated in patients with chronic liver diseases, including alcoholic liver disease and nonalcoholic liver disease. A decrease in commensal nonpathogenic bacteria including Ruminococaceae and Lactobacillus and an overgrowth of pathogenic bacteria such as Bacteroidaceae and Enterobacteriaceae are observed in cirrhotic patients. The decreased diversity of the gut microbiota in cirrhotic patients before liver transplantation is also related to a higher incidence of post-transplant infections and cognitive impairment. The exposure to endotoxins activates macrophages via Toll-like receptor 4 (TLR4), leading to a greater production of proinflammatory cytokines and chemokines including tumor necrosis factor-alpha, interleukin (IL)-6, and IL-8, which play key roles in the progression of liver diseases. TLR4 is a major receptor activated by the binding of endotoxins in macrophages, and its downstream signal induces proinflammatory cytokines. The expression of TLR4 is also observed in nonimmune cells in the liver, such as hepatic stellate cells, which play a crucial role in the progression of liver fibrosis that develops into hepatocarcinogenesis, suggesting the importance of the interaction between endotoxemia and TLR4 signaling as a target for preventing liver disease progression. In this review, we summarize the findings for the role of gut-derived endotoxemia underlying the progression of liver pathogenesis.

Highlights

  • This study suggested that liver fibrosis, the F4 stage of fibrosis, is the condition in which dysbiosis is linked to the pathogenesis, including in patients with nonalcoholic steatohepatitis (NASH) [8,9]

  • Various studies have revealed that gut-derived endotoxins from the gut microbiota could be closely associated with chronic liver disease (CLD)

  • Dysbiosis and leaky gut are induced by alcohol and a high-calorie/high-fat diet, which results in liver inflammation and liver fibrosis progression, eventually progressing to liver cirrhosis, especially in patients with alcoholic liver disease and NAFLD

Read more

Summary

Introduction

There are many mechanisms underlying the pathogenesis of liver inflammation, fibrosis, and carcinogenesis, microbial metabolites and products derived from the intestinal tract are considered to be some of the major factors that accelerate the progression of liver diseases due to the close links between the liver and intestine. In patients with liver diseases, the gut bacteria themselves, as well as their components, often translocate into the portal blood flow and directly reach the liver as a result of the disrupted intestinal barrier, or so-called bacterial translocation. Patients, dysbiosis is often observed and increases alongside the stages of liver fibrosis, leading to bacterial translocation including endotoxins. We summarize the influence of gut-derived endotoxins on the progression of liver disease

Dysbiosis
Disruptions in Intestinal Barrier Function
Alcoholic Liver Disease
Viral Hepatitis
Hepatitis B Viral Infection
Hepatitis C Viral Infection
Autoimmune Liver Diseases
Liver Cirrhosis and Its Complications
Ascites and SBP
Portal Hypertension
Hepatic Encephalopathy
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call