Abstract

Potato virus Y (PVY) and zebra chip (ZC) disease are major threats to solanaceous crop production in North America. PVY can be spread by aphid vectors and through vegetative propagation in potatoes. ZC is associated with “Candidatus Liberibacter solanacearum” (Lso), which is transmitted by the tomato/potato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae). As these two pathosystems may co-occur, we studied whether the presence of one virus strain, PVY°, affected the host preference, oviposition, and egg hatch rate of Lso-free or Lso-carrying psyllids in tomato plants. We also examined whether PVY infection influenced Lso transmission success by psyllids, Lso titer and plant chemistry (amino acids, sugars, and phytohormones). Lso-carrying psyllids showed a preference toward healthy hosts, whereas the Lso-free psyllids preferentially settled on the PVY-infected tomatoes. Oviposition of the Lso-carrying psyllids was lower on PVY-infected than healthy tomatoes, but Lso transmission, titer, and psyllid egg hatch were not significantly affected by PVY. The induction of salicylic acid and its related responses, and not nutritional losses, may explain the reduced attractiveness of the PVY-infected host to the Lso-carrying psyllids. Although our study demonstrated that pre-existing PVY infection can reduce oviposition by the Lso-carrying vector, the preference of the Lso-carrying psyllids to settle on healthy hosts could contribute to Lso spread to healthy plants in the presence of PVY infection in a field.

Highlights

  • Potato virus Y (PVY) and zebra chip (ZC) disease are major threats to solanaceous crop production in North America

  • Oviposition of the Lsocarrying psyllids was significantly lower on the PVY-infected compared to the healthy tomatoes (Mann–Whitney, U = 415.0, n1 = 43, n2 = 30, P = 0.010) (Fig. 2a)

  • No significant effect of PVY presence was detected for the oviposition of the Liberibacter solanacearum” (Lso)-free tomato/potato psyllids (Mann–Whitney, U = 242.0, n1 = 24, n2 = 19, P = 0.731) (Fig. 2b)

Read more

Summary

Introduction

Potato virus Y (PVY) and zebra chip (ZC) disease are major threats to solanaceous crop production in North America. ZC is associated with “Candidatus Liberibacter solanacearum” (Lso), which is transmitted by the tomato/potato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae) As these two pathosystems may co-occur, we studied whether the presence of one virus strain, PVY°, affected the host preference, oviposition, and egg hatch rate of Lso-free or Lso-carrying psyllids in tomato plants. Our study demonstrated that pre-existing PVY infection can reduce oviposition by the Lso-carrying vector, the preference of the Lso-carrying psyllids to settle on healthy hosts could contribute to Lso spread to healthy plants in the presence of PVY infection in a field. Tobacco mosaic virus (TMV) infection was shown to reduce tomato attractiveness to the tomato/potato psyllid (Bactericera cockerelli [Hem., Triozidae]) vector of “Candidatus Liberibacter solanacearum” (Lso)[20]. Shapiro et al.[21] provided another example in which plants infected with Zucchini yellow mosaic virus became less attractive to Acalymma vittatum, the beetle vector of the bacterial pathogen Erwinia tracheiphlia, resulting in a reduced incidence of the Erwinia in Zucchini yellow mosaic virusinfected plants

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.