Abstract

Living systems are constantly under different combinations of competing gradients of chemical, thermal, pH, and mechanical stresses allied. The present work is about competing chemical and thermal gradients imposed on E. coli in a diffusive stagnant microfluidic environment. The bacterial cells were exposed to opposing and aligned gradients of an attractant (1 mM sorbitol) or a repellant (1 mM NiSO4) and temperature. The effects of the repellant/attractant and temperature on migration behavior, migration rate, and initiation time for migration have been reported. It has been observed that under competing gradients of an attractant and temperature, the nutrient gradient (gradient generated by cells itself) initiates directed migration, which, in turn, is influenced by temperature through the metabolic rate. Exposure to competing gradients of an inhibitor and temperature leads to the imposed chemical gradient governing the directed cell migration. The cells under opposing gradients of the repellant and temperature have experienced the longest decision time (∼60 min). The conclusion is that in a competing chemical and thermal gradient environment in the range of experimental conditions used in the present work, the migration of E. coli is always initiated and governed by chemical gradients (either generated by the cells in situ or imposed upon externally), but the migration rate and percentage of migration of cells are influenced by temperature, shedding insights into the importance of such gradients in deciding collective dynamics of such cells in physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.