Abstract

This review describes mechanisms for pulling fluids through microfluidic devices using hydrophilic structures at the downstream end of the device. These pumps enable microfluidic devices to get out of the lab and become point-of-care devices that can be used without external pumps. We briefly summarize prior related reviews on capillary, pumpless, and passively driven microfluidics then provide insights into the fundamental physics of wicking pumps. No prior reviews have focused on wicking pumps for microfluidics. Recent progress is divided into four categories: porous material pumps, hydrogel pumps, and 2.5D- and 3D-microfabricated pumps. We conclude with a discussion of challenges and opportunities in the field, which include achieving constant flow rate, priming issues, and integration of pumps with devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.