Abstract
Cells are very sensitive to various microenvironmental cues, including mechanical stress and chemical gradients. Therefore, physiologically relevant models of cells should consider how cells sense and respond to microenvironmental cues. This can be accomplished by using microfluidic systems, in which fluid physics can be realized at a nanoliter scale. Here we describe a simple and versatile method to study the generation of chemical concentration and mechanical shear stress gradients in a single microfluidic chip. Our system uses an osmotic pump that produces very slow (<a few microm/s) and controlled flow, allowing a wide and stable diffusion of specific chemical concentration. We also established a shear stress gradient passively via a circular channel in the interstitial level. For evaluation of the system, we used L929 mouse fibroblast cells and simultaneously exposed them to a mechanical stress gradient and a chemical nutrient gradient. The interstitial shear stress level clearly affected cell alignment, mobility velocity, and attachment. At the same time, cell proliferation reflected nutrient concentration level. Our system, which enables continuous and long-term culture of cells in a combined chemical and mechanical gradient, provides physiologically realistic conditions and will be applicable to studies of cancer metastasis and stem cell differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.