Abstract

Temperature-dependent spectroscopic ellipsometry measurements, combined with AFM investigations, have been performed to reveal the interplay between the structural and electronic phase transitions during the insulator-to-metal transition in VO2 thin films with different thicknesses. A comprehensive analysis of the macroscopic optical response in the framework of an anisotropic Bruggeman effective medium approximation yields the hysteretic shape evolution of the metallic inclusions and the changes in film roughness due to the structural transitions during a temperature cycle. The authors show that the structural modifications in the material across the transition affect the metallic cluster shape in the vicinity of the percolation threshold, leading to an altered absorption by the localized plasmon resonances. The structural changes are supported by AFM measurements and can be explained by the particular strain present in different films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.