Abstract
Transport properties of a single plasmon interacting with two quantum dots (QDs) system coupled to one-dimensional surface plasmonic waveguide are investigated theoretically via the real-space approach. We mainly focus on the coupling effects of the two QDs on the transmission properties of a single incident plasmon. We demonstrated that switching of a single plasmon can be achieved by controlling the interparticle distance, the interparticle coupling strength, and the QD-waveguide coupling strength, as well as spectral detuning. We also showed that the coupling between the continuum excitations and the discrete excitations results in the Fano-type transmission spectrum. The transport properties of a single plasmon interacting with such a two direct coupled QDs system could find the applications in the design of plasmonic nanodevices, such as single photon switching and nanomirrors, and in quantum information processing.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have