Abstract

OBJECTIVE There is increasing interest in neuromodulation for addiction. Methamphetamine abuse is a global health epidemic with no proven treatment. The objective of this study was to examine the effects of intermittent nucleus accumbens shell (AcbSh) deep brain stimulation (DBS) on operant methamphetamine intake and on methamphetamine seeking when stimulation is delivered in an environment different from that of drug use. METHODS Eighteen rats were implanted with intravenous (IV) catheters and bilateral AcbSh electrodes and subsequently underwent daily sessions in 2-lever (active/methamphetamine and inactive/no reward) operant chambers to establish IV methamphetamine self-administration. After stable responding was achieved, 3 hours of DBS or sham treatment was administered (sham: 0 µA, n = 8; active: 200 µA, n = 10) in a separate nondrug environment prior to the daily operant sessions for 5 consecutive days. Immediately following each DBS/sham treatment, rats were placed in the operant chambers to examine the effects of remote stimulation on methamphetamine intake. After the 5 days of therapy were finished, rats reestablished a posttreatment baseline, followed by extinction training, abstinence, and 1 day of relapse testing to assess methamphetamine-seeking behavior. RESULTS There was a decrease in total methamphetamine intake in rats receiving active DBS versus sham on Days 1 (42%) and 2 (44%). Methamphetamine administration returned to baseline levels following the cessation of DBS therapy. Compared with baseline drug responding, methamphetamine seeking was reduced (57%) in the DBS group but not in the sham group. CONCLUSIONS It is feasible to deliver noncontinuous DBS outside of the drug use environment with a resultant decrease in IV methamphetamine intake and seeking. The AcbSh is a neuroanatomical substrate for psychostimulant reinforcement and may be a target for intermittent neuromodulatory therapies that could be administered during brief periods of sobriety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.