Abstract

Genomic integrity often is compromised in tumor cells, as illustrated by genetic alterations leading to loss of heterozygosity (LOH). One mechanism of LOH is mitotic crossover recombination between homologous chromosomes, potentially initiated by a double-strand break (DSB). To examine LOH associated with DSB-induced interhomolog recombination, we analyzed recombination events using a reporter in mouse embryonic stem cells derived from F1 hybrid embryos. In this study, we were able to identify LOH events although they occur only rarely in wild-type cells (≤2.5%). The low frequency of LOH during interhomolog recombination suggests that crossing over is rare in wild-type cells. Candidate factors that may suppress crossovers include the RecQ helicase deficient in Bloom syndrome cells (BLM), which is part of a complex that dissolves recombination intermediates. We analyzed interhomolog recombination in BLM-deficient cells and found that, although interhomolog recombination is slightly decreased in the absence of BLM, LOH is increased by fivefold or more, implying significantly increased interhomolog crossing over. These events frequently are associated with a second homologous recombination event, which may be related to the mitotic bivalent structure and/or the cell-cycle stage at which the initiating DSB occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.