Abstract

BLM has been implicated in DNA double-strand break (DSB) repair, but its precise role remains obscure. To explore this, we generated BLM(-/-) and BLM(-/-)LIG4(-/-) cells from the human pre-B cell line Nalm-6. BLM(-/-) cells exhibited retarded growth, increased mutation rates, and hypersensitivity to agents that block replication fork progression. Interestingly, these phenotypes were significantly suppressed by deletion of LIG4, suggesting that nonhomologous end-joining (NHEJ) is unfavorable for integrity and survival of cells lacking BLM. We propose that the absence of BLM leads to accumulation of replication-associated, one-ended DSBs, which are deleterious to cells and lead to genomic instability when repaired by NHEJ. In addition, the NHEJ pathway per se was marginally affected by BLM deficiency, as evidenced by x-ray sensitivity and I-SceI-based DSB repair assays. More intriguingly, however, these experiments revealed the presence of an alternative, DNA ligase IV-independent end-joining pathway, which was significantly affected by the loss of BLM. Collectively, our results provide the first evidence for genetic interactions between BLM and NHEJ in human cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.