Abstract

Some of the restarting events of stalled replication forks lead to sister chromatid exchange (SCE) as a result of homologous recombination (HR) repair with crossing over. The rate of SCE is elevated by the loss of BLM helicase or by a defect in translesion synthesis (TLS). We found that spontaneous SCE levels were elevated approximately 2-fold in chicken DT40 cells deficient in Fanconi anemia (FA) gene FANCC. To investigate the mechanism of the elevated SCE, we deleted FANCC in cells lacking Rad51 paralog XRCC3, TLS factor RAD18, or BLM. The increased SCE in fancc cells required Xrcc3, whereas the fancc/rad18 double mutant exhibited higher SCE than either single mutant. Unexpectedly, SCE in the fancc/blm mutant was similar to that in blm cells, indicating functional linkage between FANCC and BLM. Furthermore, MMC-induced formation of GFP-BLM nuclear foci was severely compromised in both human and chicken fancc or fancd2 cells. Our cell survival data suggest that the FA proteins serve to facilitate HR, but not global TLS, during crosslink repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.