Abstract

The duplex bond joint consisting of a metallic substrate armored with carbon-base materials is a promising candidate configuration for application to high heat flux operations. When a bond joint is subjected to thermal loadings, significant thermal stresses may develop due to mismatch of the thermal expansion coefficients. Stress intensification occurs near the free surface edge of the interface, sometimes showing singularity. The singular stress fields are critical for understanding the loading nature of the bond interface in a joint system. In this paper, thermal stresses in the bond interface of a carbon-to-molybdenum joint element were investigated. A high heat flux (HHF) pulse was assumed as the reference load history to simulate the thermal shock condition. The thermomechanical behavior was described quantitatively in terms of the stress intensity factor. The stress solutions of the singular field computed by the theoretical approach showed a good agreement with the numerical results of the finite element analysis. The stress intensity factor of the singular stress fields near the free surface edge of the interface showed a time variation similar to that of the bulk stress. The temperature gradient induced by the transient HHF load affected the overall interfacial stress only slightly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.