Abstract

Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test technique (modified pin-on-ring test) to obtain some clarifications of the mechanism of interfacial failure. Tests were run using PVD-coated rings finished by polishing or grinding to produce different surface roughnesses. From the results, it appears that the fatigue durability is at lower stress levels significantly influenced by both the pre-treatment and the final surface roughness of the material. The polished and smoother surfaces are associated with a longer fatigue life. However, at a higher contact stress, there appears to be very little influence of pre-treatment and surface roughness. Two mechanisms of crack propagation under pure rolling conditions were found, depending on the substrate hardness. For the softer substrates, the cracks propagate mainly perpendicular to the surface, whereas for the harder substrate, the cracks generally originate at the interface and progress in the coating parallel to the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.